Tabella di contingenza

% di riga

I tre tipi di percentuale rimandano a significati differenti

	Si più info	No più info	Totale
Sufficiente	46	567	613
Insufficiente	218	419	637
Totale	264	986	1250

	Si più info	No più info	Totale
Sufficiente	7,5%	92,5%	100,0%
Insufficiente	34,2%	65,8%	100,0%
Totale	21,1%		

Tabella di contingenza

Statistica bivariata

% di colonna

I tre tipi di percentuale rimandano a significati differenti

Si più info	No più info	Totale
46	567	613
218	419	637
264	986	1250
	46 218	218 419

	Si più info	No più info	Totale
Sufficiente	17,4%	57,5%	49,0%
Insufficiente	82,6%	42,5%	51,0%
Totale	100,0%	100,0%	100,0%

Tabella di contingenza

% di cella

I tre tipi di percentuale rimandano a significati differenti

	Si più info	No più info	Totale
Sufficiente	46	567	613
Insufficiente	218	419	637
Totale	264	986	1250

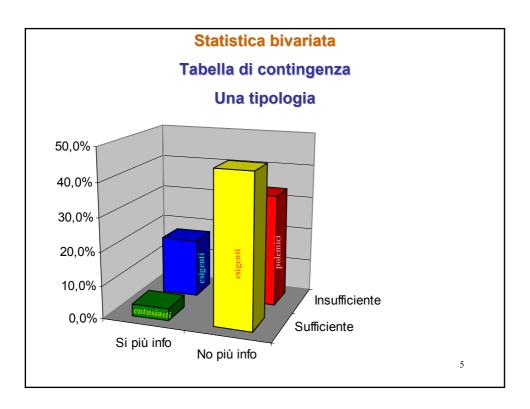
	Si più info	No più info	Totale
Sufficiente	3,7%	45,4%	49,0%
Insufficiente	17,4%	33,5%	51,0%
Totale	21,1%	78,9%	100,0%

3

Statistica bivariata

Tabella di contingenza Una tipologia

		Più info	
		Sì	No
Valutazione Informazione	sufficiente	Entusiasti 3,7%	Soddisfatti 45,4%
	insufficiente	Esigenti 17,4%	Polemici 33,5%



Operatori di connessione – Misure basate sul Chi quadro

$$\chi^{2} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(n_{ij} - n_{ij}\right)^{2}}{n_{ij}}$$

Il valore del Chi quadro è influenzato dalla numerosità campionaria.

Due tabelle con le stesse percentuali di cella ma costruita con N differenti forniscono valori di Chi quadro diversi. In particolare il valore del Chi quadro cresce al crescere del valore di N

Operatori di connessione - Misure basate sul Chi quadro

Una misura di associazione derivata dal Chi quadro ed indipendente dalla numerosità campionaria è Φ^2

$$\Phi^{2} = \frac{X^{2}}{N^{2}} = \sum_{i=1}^{I} \sum_{j=1}^{J} \frac{\left(f_{ij} - \hat{f}_{ij} \right)^{2}}{\hat{f}_{ij}}$$

7

Statistica bivariata

Operatori di connessione – Misure basate sul Chi quadro

Il valore massimo di Φ^2 dipende dal numero di modalità delle variabili. Per questo motivo si utilizza anche la statistica T di Tschuprov che, in ogni caso, ha come valore massimo 1

$$T = \frac{\Phi^{2}}{\sqrt{(J-1)(I-1)}}$$

Operatori di concordanza - K di Cohen

Si calcola per variabili categoriali che presentano una specifica affinità da un punto di vista logico.

Es: lavoro del padre e del figlio

Diagnosi operate da due diversi psicologi

Il K di Cohen considera solamente le frequenze poste sulla diagonale principale, quelle cioè che riguardano categorie affini

9

Statistica bivariata

Operatori di concordanza – K di Cohen

Es: si confrontano fatte diagnosi di due psicologi che hanno analizzato le cartelle cliniche di 20 pazienti

	Psicosi	Borderline	Nevrosi	Totale
Psicosi	4	0	0	4
Borderline	1	3	1	5
Nevrosi	1	1	9	11
TOTALE	6	4	10	20

Operatori di concordanza – K di Cohen

L'accordo complessivo atteso è dato dalla somma delle probabilità degli eventi congiunti definiti dalle celle poste sulla diagonale principale

 $\hat{\theta} = \sum_{i=1}^{I} f_{i.} f_{i}$

Frequenze relative congiunte teoriche

	Psicosi	Borderline	Nevrosi	Totale
Psicosi	0,06			0,20
Borderline		0,05		0,25
Nevrosi			0,275	0,55
TOTALE	0,30	0,20	0,50	1

$$\hat{\theta} = 0.06 + 0.05 + 0.275 = 0.385$$

Statistica bivariata

Operatori di concordanza - K di Cohen

L'accordo complessivo osservato è dato dalla somma delle frequenze relative delle celle poste sulla diagonale principale

$$\theta = \sum_{i=1}^{I} f_{ii}$$

Frequenze relative congiunte osservate

	Psicosi	Borderline	Nevrosi	Totale
Psicosi	0,2			0,20
Borderline		0,15		0,25
Nevrosi			0,45	0,55
TOTALE	0,30	0,20	0,50	1

$$\theta = 0.4 + 0.15 + 0.45 = 0.8$$

Operatori di concordanza - K di Cohen

$$K = \frac{\theta - \hat{\theta}}{1 - \hat{\theta}}$$

$$K = \frac{0.8 - 0.385}{1 - 0.385} = \frac{0.415}{0.615} = 0.675$$

K è abbastanza elevato, possiamo quindi concludere che c'è una relazione tra le diagnosi fatte dai due psicologi $_{13}$

Statistica bivariata

Operatori di concordanza – K di Cohen

Kappa	Livello di accordo
< 0,00	Povero
0,00-0,20	Esile
0,21-0,40	Discreto
0,41 - 0,60	Moderato
0,61-0,80	Sostanziale
0,81 – 1,00	perfetto

Landis, Koch 1977

Operatori di concordanza - K di Cohen

Per capire se il valore osservato è significativo bisogna impostare un test:

$$H_0 = K \le 0$$
$$H_1 = K > 0$$

$$\alpha = .01$$
 $Z_c = 2.33$

Statistica bivariata

Operatori di concordanza - K di Cohen

Nell'esempio:

$$Z = \frac{0,675}{\sqrt{\frac{0,385}{20(1-0,385)}}} \qquad Z = \frac{0}{\sqrt{\frac{0}{100}}}$$

$$Z = \frac{0,675}{\sqrt{\frac{0,385}{20(1-0.385)}}} \quad Z = \frac{0,675}{\sqrt{\frac{0,385}{12.3}}} \quad Z = \frac{0,675}{0,177} = 3,25$$

$$Z_c = 2,33$$

 $Z = 3,25$

$$z = 3,25$$

Il valore di k è diverso maggiore di zero con con un livello di significatività alfa=0.01

Operatori di concordanza - Q di Yule

Valuta la concordanza nel caso di due dicotomie

ES: X= soggetti che si sono licenziati nell'ultimo anno

Y = soggetti che hanno seguito almeno un corso di formazione negli ultimi 5 anni

		Formazione		totale
		si	no	
Licenziati	si	10	20	30
Licenziali	no	30	20	50
totale		40	40	80

17

Statistica bivariata

Operatori di concordanza - Q di Yule

	Valore	Interpretazione
Minimo	-1	Associazione completa negativa
Centrale	0	Indipendenza
Massimo	+1	Associazione completa positiva

Operatori di concordanza - Q di Yule

$$Q = \frac{n_{11}n_{22} - n_{12}n_{21}}{n_{11}n_{22} + n_{12}n_{21}}$$

		Formazione		totale
		si	no	
Licenziati	si	10	20	30
Licenziali	no	30	20	50
totale		40	40	80

$$Q = \frac{10 * 20 - 20 * 30}{10 * 20 + 20 * 30} = \frac{200 - 600}{200 + 600} = \frac{-400}{800} = -0.5$$

Poiché il valore di Q è abbastanza alto possiamo affermare che esiste una relazione tra il licenziamento e la formazione

Statistica bivariata

Coefficiente di correlazione tetracorico

$$r_{phi} = \frac{n_{11}n_{22} - n_{12}n_{21}}{\sqrt{n_{1.}n_{.1}n_{2.}n_{.2}}}$$

	Valore	Interpretazione
Minimo	-1	Associazione completa
		negativa
Centrale	0	Indipendenza
Massimo	+1	Associazione completa
		positiva

Più sensibile allo squilibrio dei marginali di riga e di colonna

Coefficiente di correlazione di Spearman

Detto anche coefficiente di correlazione per ranghi, misura la concordanza tra due variabili espresse a livello di scala ordinale

$$\gamma_{s} = 1 - 6 \sum_{i=1}^{N} \frac{(x_{i} - y_{i})^{2}}{N(N^{2} - 1)}$$

21

Statistica bivariata

Coefficiente di correlazione di Spearman

Esempio: uno psicologo ha sottoposto 5 soggetti a due test. Si chiede se esiste una relazione tra le prestazioni nei due test

id	Graduatoria TEST A	Graduatoria TEST B
1	1°	3°
2	2°	4°
3	3°	1°
4	4°	5°
5	5°	2°

Coefficiente di correlazione di Spearman

Esempio: per ciascun soggetto possiamo calcolare la differenza tra il rango del test A e quello del test B ed elevare queste differenze al quadrato

id	Graduatoria TEST A	Graduatoria TEST B	D	D ²
1	1	3	-2	4
2	2	4	-2	4
3	3	1	2	4
4	4	5	-1	1
5	5	2	3	9
			somma=	22

23

Statistica bivariata

Coefficiente di correlazione di Spearman

Esempio: riprendendo la formula $r_s = 1 - 6\sum_{s=1}^{\infty} (r_s - r_s)^{-1}$

$$r_s = 1 - 6\sum_{i=1}^{N} \frac{(x_i - y_i)^2}{N(N^2 - 1)}$$

$$\gamma_s = 1 - 6 \frac{22}{5(25 - 1)} = 1 - 6 \frac{22}{120} = 1 - 6(0,183) = -0,1$$

	Valore	Interpretazione
Minimo	-1	Associazione completa negativa
Centrale	0	Indipendenza
Massimo	+1	Associazione completa positiva

La covarianza

La covarianza è la media dei prodotti degli scarti dalla media di due variabili

$$S_{xy} = \frac{1}{N} \sum_{i=1}^{N} \left(\chi_i - \overline{\chi} \right) \left(y_i - \overline{y} \right)$$

Momento centrale misto di ordine 2

Statistica bivariata

La covarianza

$$S_{xy} = \frac{1}{N} \sum_{i=1}^{N} \left(x_i - \overline{x} \right) \left(y_i - \overline{y} \right)$$

Esempio

			Scarti	Scarti		
ident	altezza	peso	altezza	peso	prodotto	
1	170	68	-3	-5	15	
2	164	73	-9	0	0	
3	178	70	5	-3	-15	
4	168	53	-5	-20	100	
5	174	86	1	13	13	
6	184	88	11	15	165	
				somma:	278	n=6
media	173	73		cov=	46,33333	

26

Salt=7.24 Spes=12.87

La correlazione

La correlazione r di Bravais e Pearson è l'indice di concordanza maggiormente utilizzato per variabili di tipo cardinale

$$\gamma_{xy} = \frac{S_{xy}}{\left|S_{x}S_{y}\right|}$$

Esempio

$$\gamma_{altezza-peso} = \frac{46,33}{7,24*12,87} = \frac{46,33}{93,18} = 0,497$$

Statistica bivariata

La correlazione

La correlazione r di Bravais e Pearson è la covarianza tra le due variabili standardizzate

$$\gamma_{xy} = S_{Z_x Z_y}$$

	Valore	Interpretazione
Minimo	-1	Associazione completa negativa
Centrale	0	Indipendenza
Massimo	+1	Associazione completa positiva

La correlazione

La significatività r di Bravais e Pearson è data da

$$f = \frac{r^2}{1 - r^2} (N - 2)$$

Distribuzione F con 1 e n-2 gdl

$$t = \frac{r}{1 - r^2} \sqrt{(N - 2)}$$

Distribuzione t con n-2 gdl

29

Statistica bivariata

La correlazione

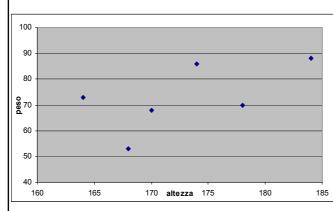


Grafico a dispersione Scatterplot

La relazione tra due variabili può essere rappresentata per mezzo di un grafico a dispersione, assegnando ad ogni oggetto coordinate definite dai valori assunti sulle due variabili